Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 20 de 240
Filter
1.
Arch Virol ; 168(7): 178, 2023 Jun 13.
Article in English | MEDLINE | ID: covidwho-20244122

ABSTRACT

The coronavirus disease 2019 (COVID-19) pandemic caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection is associated with a high mortality rate. The clinical course is attributed to the severity of pneumonia and systemic complications. In COVID-19 patients and murine models of SARS-CoV-2 infection, the disease may be accompanied by excessive production of cytokines, leading to an accumulation of immune cells in affected organs such as lungs. Previous reports have shown that SARS-CoV-2 infection antagonizes interferon (IFN)-dependent antiviral response, thereby preventing the expression of IFN-stimulated genes (ISGs). Lower IFN levels have been linked to more-severe COVID-19. Interleukin 27 (IL27) is a heterodimeric cytokine composed of IL27p28 and EBI3 subunits, which induce both pro- and anti-inflammatory responses. Recently, we and others have reported that IL27 also induces a strong antiviral response in an IFN-independent manner. Here, we investigated transcription levels of both IL27 subunits in COVID-19 patients. The results show that SARS-CoV-2 infection modulates TLR1/2-MyD88 signaling in PBMCs and monocytes and induces NF-κB activation and expression of NF-κB-target genes that are dependent on a robust pro-inflammatory response, including EBI3; and activates IRF1 signaling which induces IL27p28 mRNA expression. The results suggest that IL27 induces a robust STAT1-dependent pro-inflammatory and antiviral response in an IFN-independent manner in COVID-derived PBMCs and monocytes as a function of a severe clinical course of COVID-19. Similar results were observed in macrophages stimulated with the SARS-CoV-2 spike protein. Thus, IL27 can trigger an antiviral response in the host, suggesting the possibility of novel therapeutics against SARS-CoV-2 infection in humans.


Subject(s)
COVID-19 , Interleukin-27 , Humans , Antiviral Agents/therapeutic use , COVID-19/immunology , Cytokines , Disease Progression , Interleukin-27/immunology , NF-kappa B , SARS-CoV-2
2.
Sci Rep ; 13(1): 8324, 2023 05 23.
Article in English | MEDLINE | ID: covidwho-20234346

ABSTRACT

Radiation pneumonitis (RP) affects both patients and physicians during radiation therapy for lung cancer. To date, there are no effective drugs for improving the clinical outcomes of RP. The activation of angiotensin-converting enzyme 2 (ACE2) improves experimental acute lung injury caused by severe acute respiratory syndrome coronavirus, acid inhalation, and sepsis. However, the effects and underlying mechanisms of ACE2 in RP remain unclear. Therefore, this study aimed to investigate the effects of angiotensin-converting enzyme inhibitors and angiotensin II receptor blockers on RP and ACE2/angiotensin-(1-7)/Mas receptor pathway activation. We found that radiotherapy decreased the expression of ACE2 and that overexpression of ACE2 alleviated lung injury in an RP mouse model. Moreover, captopril and valsartan restored ACE2 activation; attenuated P38, ERK, and p65 phosphorylation; and effectively mitigated RP in the mouse model. Further systematic retrospective analysis illustrated that the incidence of RP in patients using renin-angiotensin system inhibitors (RASis) was lower than that in patients not using RASis (18.2% vs. 35.8% at 3 months, p = 0.0497). In conclusion, the current findings demonstrate that ACE2 plays a critical role in RP and suggest that RASis may be useful potential therapeutic drugs for RP.


Subject(s)
Acute Lung Injury , Radiation Pneumonitis , Animals , Mice , NF-kappa B , Peptidyl-Dipeptidase A , Angiotensin-Converting Enzyme 2 , Renin-Angiotensin System , Retrospective Studies , Antihypertensive Agents , Enzyme Inhibitors
3.
Int Immunopharmacol ; 120: 110240, 2023 Jul.
Article in English | MEDLINE | ID: covidwho-2313874

ABSTRACT

Pneumonia is an acute inflammation of the lungs induced by pathogenic microorganisms, immune damage, physical and chemical factors, and other factors, and the latest outbreak of novel coronavirus pneumonia is also an acute lung injury (ALI) induced by viral infection. However, there are currently no effective treatments for inflammatory cytokine storms in patients with ALI/acute respiratory distress syndrome (ARDS). Protein kinase D (PKD) is a highly active kinase that has been shown to be associated with the production of inflammatory cytokines. Therefore, small-molecule compounds that inhibit PKD may be potential drugs for the treatment of ALI/ARDS. In the present study, we evaluated the ability of the small-molecule inhibitor CRT0066101 to attenuate lipopolysaccharide (LPS)-induced inflammatory cytokine production through in vitro cell experiments and a mouse pneumonia model. We found that CRT0066101 significantly reduced the protein and mRNA levels of LPS-induced cytokines (e.g., IL-6, TNF-α, and IL-1ß). CRT0066101 inhibited MyD88 and TLR4 expression and reduced NF-κB, ERK, and JNK phosphorylation. CRT0066101 also reduced NLRP3 activation, inhibited the assembly of the inflammasome complex, and attenuated inflammatory cell infiltration and lung tissue damage. Taken together, our data indicate that CRT0066101 exerts anti-inflammatory effects on LPS-induced inflammation through the TLR4/MyD88 signaling pathway, suggesting that CRT0066101 may have therapeutic value in acute lung injury and other MyD88-dependent inflammatory diseases.


Subject(s)
Acute Lung Injury , COVID-19 , Pneumonia , Respiratory Distress Syndrome , Mice , Animals , Cytokine Release Syndrome/metabolism , Myeloid Differentiation Factor 88/metabolism , Lipopolysaccharides/pharmacology , Toll-Like Receptor 4/metabolism , COVID-19/metabolism , Lung/pathology , Pneumonia/pathology , Acute Lung Injury/chemically induced , NF-kappa B/metabolism , Inflammation/metabolism , Cytokines/metabolism , Respiratory Distress Syndrome/metabolism
4.
Front Immunol ; 14: 1167972, 2023.
Article in English | MEDLINE | ID: covidwho-2316071

ABSTRACT

Theiler's murine encephalomyelitis virus (TMEV) establishes persistent viral infections in the central nervous system and induces chronic inflammatory demyelinating disease in susceptible mice. TMEV infects dendritic cells, macrophages, B cells, and glial cells. The state of TLR activation in the host plays a critical role in initial viral replication and persistence. The further activation of TLRs enhances viral replication and persistence, leading to the pathogenicity of TMEV-induced demyelinating disease. Various cytokines are produced via TLRs, and MDA-5 signals linked with NF-κB activation following TMEV infection. In turn, these signals further amplify TMEV replication and the persistence of virus-infected cells. The signals further elevate cytokine production, promoting the development of Th17 responses and preventing cellular apoptosis, which enables viral persistence. Excessive levels of cytokines, particularly IL-6 and IL-1ß, facilitate the generation of pathogenic Th17 immune responses to viral antigens and autoantigens, leading to TMEV-induced demyelinating disease. These cytokines, together with TLR2 may prematurely generate functionally deficient CD25-FoxP3+ CD4+ T cells, which are subsequently converted to Th17 cells. Furthermore, IL-6 and IL-17 synergistically inhibit the apoptosis of virus-infected cells and the cytolytic function of CD8+ T lymphocytes, prolonging the survival of virus-infected cells. The inhibition of apoptosis leads to the persistent activation of NF-κB and TLRs, which continuously provides an environment of excessive cytokines and consequently promotes autoimmune responses. Persistent or repeated infections of other viruses such as COVID-19 may result in similar continuous TLR activation and cytokine production, leading to autoimmune diseases.


Subject(s)
COVID-19 , Demyelinating Diseases , Theilovirus , Mice , Animals , Interleukin-6 , Demyelinating Diseases/pathology , NF-kappa B , Virulence , Cytokines , Virus Replication
5.
PLoS Pathog ; 19(3): e1011297, 2023 03.
Article in English | MEDLINE | ID: covidwho-2311522

ABSTRACT

Macrophages are a first line of defense against pathogens. However, certain invading microbes modify macrophage responses to promote their own survival and growth. Mycobacterium tuberculosis (M.tb) is a human-adapted intracellular pathogen that exploits macrophages as an intracellular niche. It was previously reported that M.tb rapidly activates cAMP Response Element Binding Protein (CREB), a transcription factor that regulates diverse cellular responses in macrophages. However, the mechanism(s) underlying CREB activation and its downstream roles in human macrophage responses to M.tb are largely unknown. Herein we determined that M.tb-induced CREB activation is dependent on signaling through MAPK p38 in human monocyte-derived macrophages (MDMs). Using a CREB-specific inhibitor, we determined that M.tb-induced CREB activation leads to expression of immediate early genes including COX2, MCL-1, CCL8 and c-FOS, as well as inhibition of NF-kB p65 nuclear localization. These early CREB-mediated signaling events predicted that CREB inhibition would lead to enhanced macrophage control of M.tb growth, which we observed over days in culture. CREB inhibition also led to phosphorylation of RIPK3 and MLKL, hallmarks of necroptosis. However, this was unaccompanied by cell death at the time points tested. Instead, bacterial control corresponded with increased colocalization of M.tb with the late endosome/lysosome marker LAMP-1. Increased phagolysosomal fusion detected during CREB inhibition was dependent on RIPK3-induced pMLKL, indicating that M.tb-induced CREB signaling limits phagolysosomal fusion through inhibition of the necroptotic signaling pathway. Altogether, our data show that M.tb induces CREB activation in human macrophages early post-infection to create an environment conducive to bacterial growth. Targeting certain aspects of the CREB-induced signaling pathway may represent an innovative approach for development of host-directed therapeutics to combat TB.


Subject(s)
Cyclic AMP Response Element-Binding Protein , Macrophages , Mycobacterium tuberculosis , Tuberculosis , Humans , Cyclic AMP Response Element-Binding Protein/metabolism , Macrophages/metabolism , Mycobacterium tuberculosis/genetics , Necroptosis , NF-kappa B/metabolism , Phagosomes/metabolism , Signal Transduction , Tuberculosis/metabolism , Tuberculosis/microbiology
6.
Int Immunopharmacol ; 119: 110177, 2023 Jun.
Article in English | MEDLINE | ID: covidwho-2300914

ABSTRACT

OBJECTIVES: Acute lung injury (ALI) poses a serious threat to human health globally, particularly with the Coronavirus 2019 (COVID-19) pandemic. Excessive recruitment and infiltration of neutrophils is the major etiopathogenesis of ALI. Esculin, also known as 6,7-dihydroxycoumarin, is a remarkable compound derived from traditional Chinese medicine Cortex fraxini. Accumulated evidence indicates that esculin has potent anti-inflammatory effects, but its pharmaceutical effect against ALI and potential mechanisms are still unclear. METHODS: This study evaluated the protective effect of esculin against ALI by histopathological observation and biochemical analysis of lung tissues and bronchoalveolar lavage fluid (BALF) in lipopolysaccharide (LPS)-challenged ALI mice in vivo. The effects of esculin on N-formyl-met-leu-phe (fMLP)-induced neutrophil migration and chemotaxis were quantitatively assessed using a Transwell assay and an automated cell imaging system equipped with a Zigmond chamber, respectively. The drug affinity responsive target stability (DARTS) assay, in vitro protein binding assay and molecular docking were performed to identify the potential therapeutic target of esculin and the potential binding sites and pattern. RESULTS: Esculin significantly attenuated LPS-induced lung pathological injury, reduced the levels of pro-inflammatory cytokines in both BALF and lung, and suppressed the activation of NF-κB signaling. Esculin also significantly reduced the number of total cells and neutrophils as well as myeloperoxidase (MPO) activity in the BALF. Esculin impaired neutrophil migration and chemotaxis as evidenced by the reduced migration distance and velocity. Furthermore, esculin remarkably inhibited Vav1 phosphorylation, suppressed Rac1 activation and the PAK1/LIMK1/cofilin signaling axis. Mechanistically, esculin could interact with ß2 integrin and then diminish its ligand affinity with intercellular adhesion molecule-1 (ICAM-1). CONCLUSIONS: Esculin inhibits ß2 integrin-dependent neutrophil migration and chemotaxis, blocks the cytoskeletal remodeling process required for neutrophil recruitment, thereby contributing to its protective effect against ALI. This study demonstrates the new therapeutic potential of esculin as a novel lead compound.


Subject(s)
Acute Lung Injury , COVID-19 , Mice , Humans , Animals , Lipopolysaccharides/pharmacology , Esculin/metabolism , Esculin/pharmacology , Esculin/therapeutic use , Neutrophil Infiltration , Molecular Docking Simulation , COVID-19/metabolism , Acute Lung Injury/chemically induced , Acute Lung Injury/drug therapy , Acute Lung Injury/metabolism , Lung/pathology , NF-kappa B/metabolism , Integrins/metabolism , Lim Kinases/metabolism
7.
Viruses ; 15(4)2023 04 18.
Article in English | MEDLINE | ID: covidwho-2305267

ABSTRACT

New antiviral treatments are needed to deal with the unpredictable emergence of viruses. Furthermore, vaccines and antivirals are only available for just a few viral infections, and antiviral drug resistance is an increasing concern. Cyanidin (a natural product also called A18), a key flavonoid that is present in red berries and other fruits, attenuates the development of several diseases, through its anti-inflammatory effects. Regarding its mechanism of action, A18 was identified as an IL-17A inhibitor, resulting in the attenuation of IL-17A signaling and associated diseases in mice. Importantly, A18 also inhibits the NF-κB signaling pathway in different cell types and conditions in vitro and in vivo. In this study, we report that A18 restricts RSV, HSV-1, canine coronavirus, and SARS-CoV-2 multiplication, indicating a broad-spectrum antiviral activity. We also found that A18 can control cytokine and NF-κB induction in RSV-infected cells independently of its antiviral activity. Furthermore, in mice infected with RSV, A18 not only significantly reduces viral titers in the lungs, but also diminishes lung injury. Thus, these results provide evidence that A18 could be used as a broad-spectrum antiviral and may contribute to the development of novel therapeutic targets to control these viral infections and pathogenesis.


Subject(s)
Antiviral Agents , COVID-19 , Mice , Animals , Antiviral Agents/pharmacology , Antiviral Agents/therapeutic use , SARS-CoV-2/metabolism , NF-kappa B/metabolism , Interleukin-17 , Flavonoids/pharmacology
8.
Parasite Immunol ; 45(5): e12982, 2023 05.
Article in English | MEDLINE | ID: covidwho-2291108

ABSTRACT

Helminths are metazoan parasites affecting about one third of the worldwide population. Chronic helminth infections (CHIs) confer immunological tolerance to harmless and self-antigens mediated by regulatory T cells (Treg) that are up-regulated. In coronavirus disease 2019 (COVID-19), abnormal adaptive immune response and unrestrained innate immune response could result in local and systemic immune-mediated tissue damage. COVID-19 and CHIs establish complicated immune interactions due to SARS-CoV-2-induced immunological stimulation and CHIs-induced immunological tolerance. However, COVID-19 severity in patients with CHIs is mild, as immuno-suppressive anti-inflammatory cytokines counterbalance the risk of cytokine storm. Here, an overview of the interplay between helminths and COVID-19 severity is given. CHIs through helminth-derived molecules may suppress SARS-CoV-2 entry and associated hyperinflammation through attenuation of the TLR4/NF-kB signalling pathway. In addition, CHIs may reduce the COVID-19 severity by reducing the SARS-CoV-2 entry points at ACE2/DPP4/CD147 axis in the initial phase and immunomodulation in the late phase of the disease by suppressing TLR4/NF-kB signalling pathway.


Subject(s)
COVID-19 , Coinfection , Helminths , Humans , Animals , SARS-CoV-2 , NF-kappa B , Friends , Toll-Like Receptor 4
9.
Int J Mol Sci ; 24(7)2023 Mar 28.
Article in English | MEDLINE | ID: covidwho-2295947

ABSTRACT

Foot-and-mouth disease (FMD) is one of the most contagious livestock diseases in the world, posing a constant global threat to the animal trade and national economies. The chemokine C-X-C motif chemokine ligand 13 (CXCL13), a biomarker for predicting disease progression in some diseases, was recently found to be increased in sera from mice infected with FMD virus (FMDV) and to be associated with the progression and severity of the disease. However, it has not yet been determined which cells are involved in producing CXCL13 and the signaling pathways controlling CXCL13 expression in these cells. In this study, the expression of CXCL13 was found in macrophages and T cells from mice infected with FMDV, and CXCL13 was produced in bone-marrow-derived macrophages (BMDMs) by activating the nuclear factor-kappaB (NF-κB) and JAK/STAT pathways following FMDV infection. Interestingly, CXCL13 concentration was decreased in sera from interleukin-10 knock out (IL-10-/-) mice or mice blocked IL-10/IL-10R signaling in vivo after FMDV infection. Furthermore, CXCL13 was also decreased in IL-10-/- BMDMs and BMDMs treated with anti-IL-10R antibody following FMDV infection in vitro. Lastly, it was demonstrated that IL-10 regulated CXCL13 expression via JAK/STAT rather than the NF-κB pathway. In conclusion, the study demonstrated for the first time that macrophages and T cells were the cellular sources of CXCL13 in mice infected with FMDV; CXCL13 was produced in BMDMs via NF-κB and JAK/STAT pathways; and IL-10 promoted CXCL13 expression in BMDMs via the JAK/STAT pathway.


Subject(s)
Foot-and-Mouth Disease Virus , Mice , Animals , NF-kappa B/metabolism , Signal Transduction , Interleukin-10/metabolism , Janus Kinases/metabolism , STAT Transcription Factors/metabolism , Macrophages/metabolism , Chemokine CXCL13/metabolism
10.
Biol Sex Differ ; 14(1): 15, 2023 03 31.
Article in English | MEDLINE | ID: covidwho-2294073

ABSTRACT

BACKGROUND: Staphylococcus aureus (S. aureus) is a pathogen responsible for a wide range of clinical manifestations and potentially fatal conditions. There is a paucity of information on the influence of androgens in the immune response to S. aureus infection. In this study, we evaluated the influence of the hormone 5α-dihydrotestosterone (DHT) on mouse peritoneal macrophages (MPMs) and human peripheral blood monocytes (HPBMs) induced by S. aureus. METHODS: An in vitro model of MPMs from BALB/c sham males, orchiectomised (OQX) males, and females was used. Cells were inoculated with 10 µL of S. aureus, phage-type 80 or sterile saline (control) for 6 h. The MPMs of OQX males and females were pre-treated with 100 µL of 10-2 M DHT for 24 h before inoculation with S. aureus. The concentration of the cytokines TNF-α, IL-1α, IL-6, IL-8, and IL-10; total nitrites (NO-2); and hydrogen peroxide (H2O2) were measured in the supernatant of MPM cultures. In addition, the toll-like receptor 2 (TLR2) and nuclear factor kappa B (NF-kB) genes that are involved in immune responses were analysed. For the in vitro model of HPBMs, nine men and nine women of childbearing age were selected and HPBMs were isolated from samples of the volunteers' peripheral blood. In women, blood was collected during the periovulatory period. The HPBMs were inoculated with S. aureus for 6 h and the supernatant was collected for the analysis of cytokines TNF-α, IL-6, IL-12; and GM-CSF, NO-2, and H2O2. The HPBMs were then removed for the analysis of 84 genes involved in the host's response to bacterial infections by RT-PCR array. GraphPad was used for statistical analysis with a p value < 0.05. RESULTS: Our data demonstrated that MPMs from sham males inoculated with S. aureus displayed higher concentrations of inflammatory cytokines and lower concentrations of IL-10, NO-2, and H2O2 when compared with MPMs from OQX males and females. A similar result was observed in the HPBMs of men when compared with those of women. Previous treatment with DHT in women HPBMs increased the production of pro-inflammatory cytokines and decreased the levels of IL-10, NO-2, and H2O2. The analysis of gene expression showed that DHT increased the activity of the TLR2 and NF-kB pathways in both MPMs and HPBMs. CONCLUSIONS: We found that DHT acts as an inflammatory modulator in the monocyte/macrophage response induced by S. aureus and females exhibit a better immune defence response against this pathogen.


Subject(s)
Staphylococcal Infections , Staphylococcus aureus , Male , Humans , Female , Animals , Mice , Staphylococcus aureus/metabolism , Dihydrotestosterone/pharmacology , NF-kappa B/genetics , NF-kappa B/metabolism , Interleukin-10 , Monocytes/metabolism , Toll-Like Receptor 2/metabolism , Tumor Necrosis Factor-alpha , Hydrogen Peroxide , Interleukin-6 , Cytokines/metabolism , Staphylococcal Infections/microbiology , Macrophages/metabolism
11.
Biomed Pharmacother ; 163: 114752, 2023 Jul.
Article in English | MEDLINE | ID: covidwho-2293358

ABSTRACT

Coronavirus disease 2019 (COVID-19) is a worldwide health threat that has long-term effects on the patients and there is currently no efficient cure prescribed for the treatment and the prolonging effects. Traditional Chinese medicines (TCMs) have been reported to exert therapeutic effect against COVID-19. In this study, the therapeutic effects of Jing Si herbal tea (JSHT) against COVID-19 infection and associated long-term effects were evaluated in different in vitro and in vivo models. The anti-inflammatory effects of JSHT were studied in lipopolysaccharide (LPS)-stimulated RAW 264.7 cells and in Omicron pseudotyped virus-induced acute lung injury model. The effect of JSHT on cellular stress was determined in HK-2 proximal tubular cells and H9c2 cardiomyoblasts. The therapeutic benefits of JSHT on anhedonia and depression symptoms associated with long COVID were evaluated in mice models for unpredictable chronic mild stress (UCMS). JSHT inhibited the NF-ƙB activities, and significantly reduced LPS-induced expression of TNFα, COX-2, NLRP3 inflammasome, and HMGB1. JSHT was also found to significantly suppress the production of NO by reducing iNOS expression in LPS-stimulated RAW 264.7 cells. Further, the protective effects of JSHT on lung tissue were confirmed based on mitigation of lung injury, repression in TMRRSS2 and HMGB-1 expression and reduction of cytokine storm in the Omicron pseudotyped virus-induced acute lung injury model. JSHT treatment in UCMS models also relieved chronic stress and combated depression symptoms. The results therefore show that JSHT attenuates the cytokine storm by repressing NF-κB cascades and provides the protective functions against symptoms associated with long COVID-19 infection.


Subject(s)
Acute Lung Injury , COVID-19 , Mice , Humans , Animals , Post-Acute COVID-19 Syndrome , Lipopolysaccharides/adverse effects , Cytokine Release Syndrome , Cytokines/metabolism , Inflammation/drug therapy , Inflammation/metabolism , Acute Lung Injury/metabolism , NF-kappa B/metabolism
12.
J Allergy Clin Immunol ; 151(4): 926-930.e2, 2023 04.
Article in English | MEDLINE | ID: covidwho-2292395

ABSTRACT

BACKGROUND: Autoantibodies against type I IFNs occur in approximately 10% of adults with life-threatening coronavirus disease 2019 (COVID-19). The frequency of anti-IFN autoantibodies in children with severe sequelae of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection is unknown. OBJECTIVE: We quantified anti-type I IFN autoantibodies in a multicenter cohort of children with severe COVID-19, multisystem inflammatory syndrome in children (MIS-C), and mild SARS-CoV-2 infections. METHODS: Circulating anti-IFN-α2 antibodies were measured by a radioligand binding assay. Whole-exome sequencing, RNA sequencing, and functional studies of peripheral blood mononuclear cells were used to study any patients with levels of anti-IFN-α2 autoantibodies exceeding the assay's positive control. RESULTS: Among 168 patients with severe COVID-19, 199 with MIS-C, and 45 with mild SARS-CoV-2 infections, only 1 had high levels of anti-IFN-α2 antibodies. Anti-IFN-α2 autoantibodies were not detected in patients treated with intravenous immunoglobulin before sample collection. Whole-exome sequencing identified a missense variant in the ankyrin domain of NFKB2, encoding the p100 subunit of nuclear factor kappa-light-chain enhancer of activated B cells, aka NF-κB, essential for noncanonical NF-κB signaling. The patient's peripheral blood mononuclear cells exhibited impaired cleavage of p100 characteristic of NFKB2 haploinsufficiency, an inborn error of immunity with a high prevalence of autoimmunity. CONCLUSIONS: High levels of anti-IFN-α2 autoantibodies in children and adolescents with MIS-C, severe COVID-19, and mild SARS-CoV-2 infections are rare but can occur in patients with inborn errors of immunity.


Subject(s)
COVID-19 , Interferon Type I , Adult , Humans , Child , Adolescent , SARS-CoV-2 , Autoantibodies , NF-kappa B , Haploinsufficiency , Leukocytes, Mononuclear , NF-kappa B p52 Subunit
13.
Zool Res ; 44(3): 505-521, 2023 May 18.
Article in English | MEDLINE | ID: covidwho-2306427

ABSTRACT

Bacterial or viral infections, such as Brucella, mumps virus, herpes simplex virus, and Zika virus, destroy immune homeostasis of the testes, leading to spermatogenesis disorder and infertility. Of note, recent research shows that SARS-CoV-2 can infect male gonads and destroy Sertoli and Leydig cells, leading to male reproductive dysfunction. Due to the many side effects associated with antibiotic therapy, finding alternative treatments for inflammatory injury remains critical. Here, we found that Dmrt1 plays an important role in regulating testicular immune homeostasis. Knockdown of Dmrt1 in male mice inhibited spermatogenesis with a broad inflammatory response in seminiferous tubules and led to the loss of spermatogenic epithelial cells. Chromatin immunoprecipitation sequencing (ChIP-seq) and RNA sequencing (RNA-seq) revealed that Dmrt1 positively regulated the expression of Spry1, an inhibitory protein of the receptor tyrosine kinase (RTK) signaling pathway. Furthermore, immunoprecipitation-mass spectrometry (IP-MS) and co-immunoprecipitation (Co-IP) analysis indicated that SPRY1 binds to nuclear factor kappa B1 (NF-κB1) to prevent nuclear translocation of p65, inhibit activation of NF-κB signaling, prevent excessive inflammatory reaction in the testis, and protect the integrity of the blood-testis barrier. In view of this newly identified Dmrt1- Spry1-NF-κB axis mechanism in the regulation of testicular immune homeostasis, our study opens new avenues for the prevention and treatment of male reproductive diseases in humans and livestock.


Subject(s)
COVID-19 , Rodent Diseases , Zika Virus Infection , Zika Virus , Humans , Male , Mice , Animals , Testis , NF-kappa B/metabolism , COVID-19/veterinary , SARS-CoV-2/metabolism , Homeostasis , Fertility , Zika Virus/metabolism , Zika Virus Infection/metabolism , Zika Virus Infection/veterinary , Membrane Proteins/metabolism , Phosphoproteins/metabolism , Phosphoproteins/pharmacology , Adaptor Proteins, Signal Transducing/metabolism , Adaptor Proteins, Signal Transducing/pharmacology , Rodent Diseases/metabolism
14.
Iran J Allergy Asthma Immunol ; 22(1): 82-90, 2023 Feb 20.
Article in English | MEDLINE | ID: covidwho-2261959

ABSTRACT

COVID-19 can induce lung inflammation, and inflammatory factors play an essential role in its pathogenesis. This inflammation can be controlled to a great extent by microRNAs(miRs). This study evaluated miR-146a-5p expression levels in the serum of patients with COVID-19 and their association with the expression of interleukin (IL)-18 and receptor activator of nuclear factor kappa-Β ligand (RANKL) genes, and lung damage. patients with COVID-19 were divided into two groups: mild and severe phases. The severe phase is defined as having a positive polymerase chain reaction (PCR) for SARS-CoV2, and acute pulmonary symptoms. The subjects' demographic, clinical, and paraclinical characteristics were collected according to a pre-prepared checklist. Total RNA was isolated from all samples using the Trizol kit to assess gene expression. The extracted product was then evaluated for the expression of miR-146a and the target genes (i.e., IL-18 and RANKL) using real-time PCR. The miR-146a gene's mean expression in mild and severe patients was 0.73 and 1.89, respectively, and this difference was statistically significant between the two groups. Also, the mean Expression of the IL-18 gene, 1.37±0.38 in the mild and 2.83±0.58 in the severe groups of the disease, demonstrated a significant difference between the two groups. In contrast, the expression levels of the RANKL gene did not show a significant difference between the two groups. Therefore, it may be hypothesized that altered levels of miR-146a may contribute to the severe COVID-19 that is more commonly observed in smokers, but further research is required.


Subject(s)
COVID-19 , MicroRNAs , Humans , Interleukin-18/genetics , Ligands , RNA, Viral , COVID-19/genetics , SARS-CoV-2/genetics , MicroRNAs/genetics , MicroRNAs/metabolism , NF-kappa B , Gene Expression
15.
Viruses ; 15(2)2023 01 24.
Article in English | MEDLINE | ID: covidwho-2267752

ABSTRACT

COVID-19 is associated with robust inflammation and partially impaired antiviral responses. The modulation of inflammatory gene expression by SARS-CoV-2 is not completely understood. In this study, we characterized the inflammatory and antiviral responses mounted during SARS-CoV-2 infection. K18-hACE2 mice were infected with a Wuhan-like strain of SARS-CoV-2, and the transcriptional and translational expression interferons (IFNs), cytokines, and chemokines were analyzed in mouse lung homogenates. Our results show that the infection of mice with SARS-CoV-2 induces the expression of several pro-inflammatory CC and CXC chemokines activated through NF-κB but weakly IL1ß and IL18 whose expression are more characteristic of inflammasome formation. We also observed the downregulation of several inflammasome effectors. The modulation of innate response, following expressions of non-structural protein 2 (Nsp2) and SARS-CoV-2 infection, was assessed by measuring IFNß expression and NF-κB modulation in human pulmonary cells. A robust activation of the NF-κB p65 subunit was induced following the infection of human cells with the corresponding NF-κB-driven inflammatory signature. We identified that Nsp2 expression induced the activation of the IFNß promoter through its NF-κB regulatory domain as well as activation of p65 subunit phosphorylation. The present studies suggest that SARS-CoV-2 skews the antiviral response in favor of an NF-κB-driven inflammatory response, a hallmark of acute COVID-19 and for which Nsp2 should be considered an important contributor.


Subject(s)
COVID-19 , NF-kappa B , Animals , Humans , Mice , Antiviral Agents , Inflammasomes , Inflammation , SARS-CoV-2
16.
Arch Virol ; 168(3): 95, 2023 Feb 25.
Article in English | MEDLINE | ID: covidwho-2279451

ABSTRACT

Epigenetic modifications play a significant role in the host's immune response to viral infection. Two epigenetic events, DNA methylation and histone acetylation, are crucial for modifying the chromatin architecture and the location of regulatory elements such as promoters and enhancers. In this case-control study, we evaluated the expression of genes involved in epigenetic machinery (DNMT1, DNMT3A, DNMT3B, HDAC2, and HDAC3) and the degree of methylation of promoters of immune response genes (IFITM1/2/3, TLR3/4, TNF-α, NF-κB, and MYD88) as well as global methylation (LINE-1 and global 5-mC) in blood samples from 120 COVID-19 patients (30 mild, 30 moderate, 30 severe, and 30 critical) and 30 healthy subjects without COVID-19. In contrast to previous reports, DNMT3A and DNMT3B expression was found to be significantly downregulated in COVID-19 cases, whereas DNMT1, HDAC2, and HDAC3 expression did not change. DNMT1 and DNMT3A were negatively correlated with COVID-19 severity. Critically ill patients had lower HDAC3 expression levels. TLR4 and TNF-α had increased promoter methylation, whereas IFITM1/2/3, TLR3, NF-κB, MYD88, and LINE-1 did not differ between cases and controls. Methylation of the TNF-α promoter increased as disease severity increased. Significantly less methylation of the TLR3 promoter was observed in patients with a positive outcome (recovery). We also found a correlation between the expression of DNMT3B and the methylation level of the TLR4 promoter. In milder cases, the global 5-mC levels were lower than that in more severe cases. Our findings suggest the exclusion of DNMTs inhibitors previously recommended for COVID-19 treatment and the need for additional research in this area.


Subject(s)
COVID-19 , DNA Methylation , Humans , Tumor Necrosis Factor-alpha/genetics , Toll-Like Receptor 4/genetics , NF-kappa B/genetics , Case-Control Studies , COVID-19 Drug Treatment , Myeloid Differentiation Factor 88/genetics , Toll-Like Receptor 3/genetics , COVID-19/genetics , DNA (Cytosine-5-)-Methyltransferases/genetics , DNA (Cytosine-5-)-Methyltransferases/metabolism , DNA (Cytosine-5-)-Methyltransferase 1/genetics , DNA (Cytosine-5-)-Methyltransferase 1/metabolism , DNA/metabolism
17.
Inflammopharmacology ; 31(3): 1437-1447, 2023 Jun.
Article in English | MEDLINE | ID: covidwho-2258075

ABSTRACT

Acute lung injury (ALI) is a life-threatening condition usually associated with poor therapeutic outcomes and a high mortality rate. Since 2019, the situation has worsened due to the COVID-19 pandemic. ALI had approximately 40% of deaths before COVID-19, mainly due to the dysfunction of the blood-gas barrier that led to lung edema, failure of gas exchange, and dyspnea. Many strategies have been taken to mitigate the disease condition, such as diuretics, surfactants, antioxidants, glucocorticoids, heparin, and ventilators with concomitant sedatives. However, until now, there is no available effective therapy for ALI. Thus, we are presenting a new compound termed Arabincoside B (AR-B), recently isolated from Caralluma arabica, to be tested in such conditions. For that, the lipopolysaccharide (LPS) mice model was used to investigate the capability of the AR-B compound to control the ALI compared to standard dexamethasone. The results showed that AR-B had a significant effect on retrieving ALI. A further mechanistic study carried out in the serum, lung homogenate, histological, and immunohistochemistry sections revealed that the AR-B either in 50 mg/kg or 75 mg/kg dose inhibited pro-inflammatory cytokines such as IL-6, IL-13, NF-κB, TNFα, and NO and stimulated regulatory cytokines IL-10. Moreover, AR-B showed a considerable potential to protect the pulmonary tissue against oxidative stress by decreasing MDA and increasing catalase and Nrf2. Also, the AR-B exhibited an anti-apoptotic effect on the lung epithelium, confirmed by reducing COX and BAX expression and upregulating Bcl-2 expression. These results pave its clinical application for ALI.


Subject(s)
Acute Lung Injury , Apocynaceae , COVID-19 , Pneumonia , Mice , Animals , Humans , Lipopolysaccharides/pharmacology , Signal Transduction , Pandemics , COVID-19/metabolism , Lung , Acute Lung Injury/drug therapy , Acute Lung Injury/metabolism , NF-kappa B/metabolism , Pneumonia/metabolism , Cytokines/metabolism , Apocynaceae/metabolism
18.
J Infect Public Health ; 16(5): 746-753, 2023 May.
Article in English | MEDLINE | ID: covidwho-2281062

ABSTRACT

BACKGROUND: Coronavirus disease 2019(COVID-19) caused a large number of infections worldwide. Although some patients recovered from the disease, some of the other problems that accompanied it, such as cardiac injury, could affect the patient's subsequent quality of life and prognosis. OBJECTIVES: To clarify the molecular mechanism of cardiac injury in SARS-CoV-2 Infection. METHODS: The RNA-Seq dataset (GSE184715) comparing expression profiling of Mock human induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CMs) and SARS-CoV-2-infected hiPSC-CMs was downloaded from Gene Expression Omnibus (GEO). Differentially expressed genes(DEGs) were performed by the R software. Degs were analyzed by enrichment analysis to clarify the affected pathways. Hub genes were screened out by a PPI network constructed from Degs. Finally, Connectivity Map was used to screen for the treatment of COVID-19 induced cardiac injury. RESULTS: 2705 differentially expressed genes were identified. Enrichment analysis confirmed that mitochondrial dysfunction was caused by SARS-CoV-2, meanwhile, cardiac muscle contraction was suppressed and NF-κB was activated. Based on the PPI network, 15 hub genes were identified. These 15 down-regulated hub genes were mainly involved in the reduced activity of complexes in the mitochondrial respiratory chain associated with mitochondrial dysfunction. Moreover, 5 candidate drugs were identified to treat cardiac injury. CONCLUSION: In conclusion, SARS-CoV-2 infection of cardiomyocytes causes mitochondrial dysfunction, including reduced mitochondrial respiratory chain complex activity and decreased ATP synthesis, leading to cardiomyocyte apoptosis, while the activated NF-κB also induced cytokine storms, ultimately resulting in cardiac injury.


Subject(s)
COVID-19 , Induced Pluripotent Stem Cells , Humans , SARS-CoV-2 , Gene Expression Profiling/methods , NF-kappa B , Quality of Life , Computational Biology/methods
19.
Virus Res ; 328: 199086, 2023 04 15.
Article in English | MEDLINE | ID: covidwho-2274194

ABSTRACT

Coronavirus disease 2019 (COVID-19) is a global pandemic caused by SARS-CoV-2 infection. Patients with severe COVID-19 exhibit robust induction of proinflammatory cytokines, which are closely associated with the development of acute respiratory distress syndrome. However, the underlying mechanisms of the NF-κB activation mediated by SARS-CoV-2 infection remain poorly understood. Here, we screened SARS-CoV-2 genes and found that ORF3a induces proinflammatory cytokines by activating the NF-κB pathway. Moreover, we found that ORF3a interacts with IKKß and NEMO and enhances the interaction of IKKß-NEMO, thereby positively regulating NF-κB activity. Together, these results suggest ORF3a may play pivotal roles in the pathogenesis of SARS-CoV-2 and provide novel insights into the interaction between host immune responses and SARS-CoV-2 infection.


Subject(s)
COVID-19 , NF-kappa B , SARS-CoV-2 , Viroporin Proteins , Humans , COVID-19/metabolism , Cytokines , I-kappa B Kinase/genetics , I-kappa B Kinase/metabolism , NF-kappa B/metabolism , Protein Serine-Threonine Kinases , SARS-CoV-2/metabolism , Viroporin Proteins/metabolism
20.
Viruses ; 15(3)2023 03 14.
Article in English | MEDLINE | ID: covidwho-2273008

ABSTRACT

Neurological effects of COVID-19 and long-COVID-19, as well as neuroinvasion by SARS-CoV-2, still pose several questions and are of both clinical and scientific relevance. We described the cellular and molecular effects of the human brain microvascular endothelial cells (HBMECs) in vitro exposure by SARS-CoV-2 to understand the underlying mechanisms of viral transmigration through the blood-brain barrier. Despite the low to non-productive viral replication, SARS-CoV-2-exposed cultures displayed increased immunoreactivity for cleaved caspase-3, an indicator of apoptotic cell death, tight junction protein expression, and immunolocalization. Transcriptomic profiling of SARS-CoV-2-challenged cultures revealed endothelial activation via NF-κB non-canonical pathway, including RELB overexpression and mitochondrial dysfunction. Additionally, SARS-CoV-2 led to altered secretion of key angiogenic factors and to significant changes in mitochondrial dynamics, with increased mitofusin-2 expression and increased mitochondrial networks. Endothelial activation and remodeling can further contribute to neuroinflammatory processes and lead to further BBB permeability in COVID-19.


Subject(s)
COVID-19 , NF-kappa B , Humans , NF-kappa B/metabolism , SARS-CoV-2/metabolism , Endothelial Cells/metabolism , Post-Acute COVID-19 Syndrome , COVID-19/metabolism , Brain , Blood-Brain Barrier , Mitochondria/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL